Laplace Transform

The Laplace transform maps a function f : [0,\infty) \rightarrow \mathbb{C} to a unary operator on complex numbers \mathcal{L}(f)(s) = \int_0^\infty f(t) e^{-st} dt. A sufficient condition for \mathcal{L}(f)(s) to exist is that f be measurable and g: g(t) = |f(t)| e^{-st} \mathbb{I}_{[0,\infty)}(t) be integrable.

A function f is exponential type if there are constants a,b such that |f(t)| \le a e^{bt} for all t \ge 0.

Define the operations:

  1. [differentiation] (Df)(x) = f'(x)
  2. [integration] (If)(x) = \int_0^x f(u) du.
  3. [convolution] (f \star g)(x) = \int_0^x f(u)g(x-u)du
  4. [complex conjugation] C(x+iy) = x - iy.

Then (DIf)(x) = f(x).

The transform has several properties.

  1. \mathcal{L}(af + bg) = a \mathcal{L}(f) + b \mathcal{L}(g)
  2. \mathcal{L}(Df)(s) = s \mathcal{L}(f)(s) - f(0-)
  3. \mathcal{L}(D^n f)(s) = s^n \mathcal{L}(f)(s) - \sum_{k=1..n} s^{n-k} f^{(k-1)}(0+)
  4. \mathcal{L}(I f)(s) = s^{-1} \mathcal{L}(f)(s)
  5. \mathcal{L}(g : g(t) = f(t) e^{at})(s) = \mathcal{L}(f)(s+a)
  6. \mathcal{L}(g : g(t) = f(at))(s) = a^{-1} \mathcal{L}(f)(a^{-1}s)
  7. \mathcal{L}(f \star g) = \mathcal{L}(f) \mathcal{L}(g)
  8. \mathcal{L}(\overline{f}(s) = \overline{\mathcal{L}(f)}(\overline{s})
  9. f is T-periodic, \mathcal{L}(f)(s) = \frac{1}{1-e^{-sT}} \int_0^T e^{-st} f(t)dt
  10. \mathcal{L}(g: g(t)=tf(t)) = (-DF)(s)
  11. \mathcal{L}(g: g(t)=f(t)g(t)) = \frac{1}{2\pi i} \lim_{T \rightarrow \infty} \int_{c-iT}^{c+iT} F(u) G(s-u) du

Linearity is a consequence of the linearity of the integral. Provided the derivative is of exponential type, the second result follows from

L(Df)(s)=0Df(t)estt=.f(t)est|00f(t)(sest)t=sL(f)(s)f(0+)

The third result is an inductive application of the second result:

L(Dnf)(s)=sL(Dn1f)(s)(Dn1f)(0+)=s(sL(Dn2f)(s)(Dn2f)(0+))(Dn1f)(0+)=snL(f)(s)j=0n1sj(Dn1jf)(0+)

The fourth result uses the second result and applied to If,

sL(If)(s)=(If)(0+)+L(DIf)(s)L(If)(s)=s1L(f)(s)

The fifth result is a consequence of aggegration of the exponential term:

L(f(t)eat)(s)=0f(t)eatestt=0f(t)e(sa)tt=L(f)(sa)The sixth result is a consequence of rescaling

L(f(at))(s)=0f(at)estt=0f(u)es(u/a)(u/a)=a10f(u)e(s/a)uu=a1L(f)(a1s)

The seventh result is an application of Fubini’s theorem

L(fg)(s)=0[0tf(u)g(tu)u]estt=00f(u)g(tu)es(tu+u)I(u<t)ut=00f(u)esug(tu)es(tu)I(0<tu)ut=0f(u)esuu0g(w)eswdw=L(f)(s)L(g)(s)

The eigth result

L(Cf)(s)=0Cf(t)estt=C[0f(t)C(est)t]=C[0f(t)eC(s)tt]=C(L(f)(C(s)))The ninth result

L(f)(s)=0f(t)estt=j=0jT(j+1)Tf(t)estt=j=00Tf(u)es(ujT)u=j=0(esT)j0Testf(t)t=11esT0Testf(t)t

The tenth result

L(tf(t))(s)=0tf(t)estt=0f(t)(s)estt=(s)0f(t)estt

The inverse transform is defined as

1(F)(t)=12πilimTciTc+iTF(s)estds=12πiCF(s)estds\mathcal{L}^{-1}(F)(t)=\frac{1}{2\pi i} \;\cdot\lim_{T \rightarrow \infty} \int_{c-iT}^{c+iT} F(s)e^{st} ds = \frac{1}{2\pi i} \oint_C F(s)e^{st} ds

such that the constant c is chosen to ensure the line integral is within the region of convergence of F with the limit interpreted in the weak-* topology (to be examined at a future date).

The eleventh result

L(f(t)g(t))(s)=0f(t)g(t)estt=0[12πilimTciTc+iTF(u)eutu]g(t)estt=12πilimTciTc+iTF(u)[0g(t)e(su)tt]u=12πilimTciTc+iTF(u)G(su)u

Laplace Transforms of Common Signals

Define the delay operator \Delta_\tau(f)(t) = f(t-\tau) \mathbb{I}(t > \tau).

  1. \mathcal{L}(\delta(t)) = 1
  2. \mathcal{L}(\Delta_\tau f)(s) = e^{-\tau s} \mathcal{L}(f)(s)
  3. \mathcal{L}(\mathbb{I}(t > 0)) = \frac{1}{s}
  4. \mathcal{L}(t^n \mathbb{I}(t > 0)) = \frac{n!}{s^{n+1}}
  5. \mathcal{L}(e^{-at}) = \frac{1}{s+a}

Navigation

About

Raedwulf ….