Borel-Cantelli Lemmas

These lemmas relate summability of the series of probability masses of a given sequence \left< A_n \right> of events to the probability of the tail event

\limsup_n A_n = \cap_n \cup_{k\ge n} A_k = [A_n i.o.]

First lemma:

\sum_n P[A_n] < \infty implies P[\limsup_n A_n] = 0.

Since P[\limsup_n A_n] = \lim_{n \rightarrow \infty} P[\cup_{k \ge n} A_k] \le \lim_{n \rightarrow  \infty}\sum_{k\ge n} P[A_k] = 0 the conclusion follows.

Second lemma:

\sum_n P[A_n] = \infty and \left< A_n \right> is an independent sequence of events, then P[\limsup_n A_n] = 1

P[\limsup_n A_n] = 1 iff P[\liminf_n A_n^C] = 0. Since

P[\liminf_n A_n^C] = \lim_n P[\cap_{k\ge n} A_k^C] \le \lim_n \lim_m P[\cap_{k = n..(n+m)} A_k^C] \\ = \lim_n \lim_m \prod_{k = n..n+m} P[A_k^C] = \lim_n \lim_m \prod_{k = n..n+m} (1 - PA_k) \\ \le \lim_n \lim_m \prod_{k = n..n+m} e^{-PA_k} = \lim_n \lim_m e^{- \sum_{k=n..n+m} PA_k} = 0

where the equality 1 - x \le e^{-x} when x \ge 0 has been used.

Bounding lemma:

Let \liminf_n A_n = \cup_n \cap_{k\ge n} A_k = [A_n a.b.f.m]

P[\liminf_n A_n] \le P[\limsup_n A_n]

Follows since P[\liminf_n A_n] = \lim_n P[\cap_{k\ge n} A_k] \le \lim_n P[\cup_{k \ge n} A_k] = P[\limsup_n A_n]

Navigation

About

Raedwulf ….