Convex Functions

definition: a real valued operator f is convex if for any x,y and for any \lambda \in (0,1), f((1-\lambda)x + \lambda y ) \le (1-\lambda)f(x) + \lambda f(y).

lemma: if f is convex and x < y < z. Let S(u,v) be the slope of the line segment with endpoints (u,f(u)),(v,f(v)). Then S(x,y)\le S(x,z) \le S(y,z).

Since x < y < z there is a t \in (0,1) such that y = x(1-t)+zt. Since f(y) \le f(x)(1-t) + f(z)t it follows that f(y)-f(x)\le (f(z)-f(x))t and so

S(x,y) = \frac{f(y)-f(x)}{y-x} \le \frac{(f(z)-f(x))t}{(z-x)t} = S(x,z)

Since (f(z)-f(x))(1-t) \le f(y)-f(z). it follows that

S(x,z) = \frac{(f(z)-f(x))(1-t)}{(z-x)(1-t)} \le \frac{f(y)-f(z)}{y-z} = S(z,y)

lemma: When x < y < u < v then S(x,y) \le S(u,v)

from prior lemma, S(x,y) \le S(x,u) \le S(y,u) \le S(y,v) \le S(u,v)

lemma: S(x,y) is non-decreasing in both parameters.

Fix x. Let y < u. Then S(x,y) \le S(x,u)

Fix u. Let x < y. Then S(x,u) \le S(y,u)

lemma: When y < v, f'(y-) \le  f'(u+)

Let x < y < u < v. Since S(x,y) \le S(y,u) \le S(u,v) and S(x,y) is non-decreasing in x it follows that f(y-) = \lim_{x \uparrow y} S(x,y) \le S(y,u). Since S(u,v) is non-increasing in y, and bounded below by f(y-) it follows that f'(y-) \le \lim_{v \downarrow y} S(y,v) = f'(y+)

lemma: for any c there is a line y(x) = f(c) + k(x-c) such that y(x) \le f(x).

Choose k \in [f'(c-),f'(c+)]. Consider z(x) = f(x) - y(x) = f(x) - f(c) - k(x-c) = (S(x,c) - k)(x-c). When x > c, S(x,c) \ge f(c+) \ge k and so z(x) \ge 0. When x < c, S(x,c) \le f(c-) \le k and so z(x) \ge 0.

lemma: (Jensen’s Inequality) when f is convex, f(\mathbb{E} X) \le \mathbb{E} f(X)

In the prior lemma, choose c = \mathbb{E}(X). Then \mathbb{E} y(X) \le \mathbb{E} f(X) and so f(\mathbb{E}(X)) \le \mathbb{E} f(X).

lemma: When f is convex and strictly increasing, \mathbb{E} X \le f^{-1} \mathbb{E} f(X).

Since f is strictly increasing so is f^{-1}. Since f(\mathbb{E} X) \le \mathbb{E} f(X) it follows that \mathbb{E} X \le f^{-1} \mathbb{E} f(X)

lemma: If f is convex, non-decreasing and g is convex, then f \circ g is convex.

Let f,g be convex functions such that f is non-decreasing. Then g(\lambda x + (1-\lambda) y) \le \lambda g(x) + (1-\lambda) g(y) and so (f\circ g)( \lambda x + (1-\lambda) y) \le f(\lambda g(x) + (1-\lambda) g(y)) \le \lambda f(g(x)) + (1-\lambda) f(g(y))

lemma: If f' \ge 0 then f is non-decreasing.

Let x < y. Then f(y) - f(x) = f'(z) (y - x) \ge 0 by the mean value theorem.

lemma: If f'' \ge 0 then f is convex.

Since f'' \ge 0, f' is non-decreasing, and so

f(z) = f(x) + \int_x^z f'(u) du \le f(x) + f'(z) (z-x)

f(y) = f(z) + \int_z^y f'(u) du \ge f(z) + f'(z) (y-z)

Hence

(f(z) - f(x))(y-z) \le f'(z)(z-x)(y-z) \le (f(y)-f(z))(z-x)

f(z)(y-x) \le f(x)(y-z) + f(y)(z-x)

and so f(z) \le f(x) \frac{y-z}{y-x} + f(y) \frac{z-x}{y-x}

and so f is convex.

lemma: the set of convex functions is a semilinear space with respect to addition and non-negative scalar multiplication.

it is clear the convexity property is preserved under binary addition and non-negative scalar multiplication.

Navigation

About

Raedwulf ….