Gronwall Inequality

This is used to establish a explicit exponential upper bound on a Riemann-integrable function that satisfies an implicit integral inequality

f(t) \le a + b\int_0^t f(x)dx

Let u(t) = a + b\int_0^t f(x) dx. Then u'(t) = bf(t) \le bu(t). Multiplying by e^{-bt} does not change ordering, and so e^{-bt} u'(t) - be^{-bt} u(t) = (e^{-bt} u)' \le 0 . Hence e^{-bt} u(t) is a non-increasing function of t and so e^{-bt} u(t) \le u(0) = a. Hence f(t) \le u(t) \le ae^{bt}.

There are other variants, usually fit to purpose for which they are used. For example, consider

f(t) \le a + b\int_0^t f(x) g(x) dx

Repeating the above programme, let u(t) = a + b\int_0^t f(x) g(x) dx where b,g > 0. Then u'(t) = b f(t) g(t) \le b u(t) g(t). Then

\left(u(t) e^{-b\int_0^t g(x) dx}  \right)' = (u'(t) - bu(t) g(t))\left( e^{-b \int_0^t g(x) dx}  \right)\le 0 and so u(t) e^{-b \int_0^t g(x) dx} is non-increasing and so u(t) e^{-b \int_0^t g(x) dx} \le a. Hence f(t) \le ae^{b \int_0^t g(x) dx}

Navigation

About

Raedwulf ….