Properties of L2

definition Let L_2(\Omega) be the collection of all random variables on the probability space \Omega such that X^2 is integrable.

lemma: when X,Y \in L_2(\Omega), |\mathbb E XY| \le (\mathbb{E} X^2)^{1/2} \cdot (\mathbb{E} Y^2)^{1/2}.

proof: Let t be a real-valued variable. Then the function \phi(t) = \mathbb{E} (X - tY)^2 is non-negative. Since

\phi(t) = \mathbb{E} X^2 - 2t \mathbb{E}(XY) + t^2 \mathbb{E} Y^2

If \mathbb{E} Y^2 = 0 then the non-negativity of \phi(t) for all values t requires that \mathbb{E}(XY) = 0 and so the claim is valid.

If \mathbb{E} Y^2 > 0, then \phi(t) is a quadratic convex polynomial. It is non-negative for all values of t iff its discriminant is non-positive: [2 \mathbb{E}(XY)]^2 - 4 \mathbb{E} X^2 \mathbb{E} Y^2 \le 0. But this implies the (\mathbb{E}(XY))^2 \le \mathbb{E} X^2 \mathbb{E} Y^2. Since the square root function is non-decreasing the claim is valid.

lemma: L_2(\Omega) is a linear space over the ring of real numbers.

proof: Since the collection of random variables is a linear space over the ring of real numbers when equipped with pointwise addition (X+Y)(\omega) = X(\omega) + Y(\omega) and scalar multiplication (a X)(\omega) = a X(\omega), it remains to demonstrate the closure of L_2(\Omega) with respect to these operations. But since \mathbb{E} (aX)^2 = a^2 \mathbb{E} X^2 < \infty, and

\mathbb{E} (X + Y)^2 = \mathbb{E} X^2 + 2 \mathbb{E}XY + \mathbb{E} Y^2 \le \left( (\mathbb{E} X^2)^{1/2} + (\mathbb{E} Y^2)^{1/2} \right)^2 < \infty the claim is validated.

lemma: \left< X,Y \right> = \mathbb{E} XY is an inner product (a.s) when X,Y \in L_2(\Omega).

proof: By the prior lemma L_2(\Omega) is a linear space. By the Cauchy-Schwartz inequality lemma, |\left< X,Y \right> | < \infty when X,Y \in L_2(\Omega). Hence \left< X,Y \right> is a real-valued function of its arguments X,Y. It is symmetric since pointwise multiplication of functions is commutative. It is linear in its first argument since expectation is a linear operation. Also \left<X,X \right> \ge 0 and \left< X,X \right> = 0 implies X = 0 (a.s)

lemma: L_2(\Omega) is an inner product space, a normed linear space with norm ||X|| = (\mathbb{E} X^2 )^{1/2} and a metric space with metric d(X,Y) = ||X - Y||.

proof: these are immediate conclusions since L_2(\Omega) equipped with the inner product given in the prior lemma is an inner product space.

lemma: \mathbb{E} | X|  \le \mathbb{E} X^2.

proof: Define the constant function 1(\omega) = 1 for all \omega \in \Omega. \mathbb{E} |X| = \mathbb{E} |X 1| \le (\mathbb{E} X^2)^{1/2} (\mathbb{E} 1)^{1/2} =  (\mathbb{E} X^2)^{1/2}

lemma: If X \in L_2(\Omega) then X \in L_1(\Omega).

proof: Since X \in L_1(\Omega) iff X is a random variable such that \mathbb{E} |X| < \infty, the claim is valid on appeal to the prior lemma.

definition: f : L^2(\Omega) \rightarrow \mathbb{R} is norm-continuous if for any sequence of \left< X_n \right> of L_2(\Omega) random variables convergent in metric to X \in L_2(\Omega) then \left< f(X_n) \right> is a sequence of real values convergent (a.s) to f(X).

example: inner product and norm are norm-continuous.

  • fix Y \in L_2(\Omega). Let \left< X_n \right> be a sequence of L_2(\Omega) random variables convergent in metric to X \in L_2(\Omega). Hence |\left<X_n - X,Y\right>| \le ||X_n - X|| ||Y|| \rightarrow 0 as n \rightarrow \infty. Hence inner product is norm-continuous.
  • Since ||X|| - ||X_n|| \le ||X - X_n|| and ||X_n|| - ||X|| \le ||X_n - X|| = ||X - X_n|| it follows that \left| ||X|| - ||X||_n \right| \le ||X-X_n|| \rightarrow 0 as n \rightarrow \infty. Hence norm is norm-continuous.

theorem: L_2(\Omega) is a complete normed space.

proof: Let \left< X_n \right> be a Cauchy sequence of L_2(\Omega). Select a sequence of indices \left< n_k \right> inductively:

choose n_1 \ge 1 : ||X_p - X_q || < 2^{-1} for all p,q \ge n_1.

choose n_{k+1} > n_k : ||X_p - X_q || < 2^{-k} for all p,q \ge n_{k+1}

Then \mathbb{E} |X_{n_{k+1}} - X_{n_k}| \le || X_{n_{k+1}} - X_{n_k} || \le 2^{-k} and so

\sum_k \mathbb{E} |X_{n_{k+1}} - X_{n_k}| \le 1

since the partial sums form a non-decreasing sequence of random variables by the monotone convergence theorem

\mathbb{E} \sum_k  |X_{n_{k+1}} - X_{n_k}| = \sum_k \mathbb{E} |X_{n_{k+1}} - X_{n_k}| \le 1

hence \sum_k  |X_{n_{k+1}} - X_{n_k}| < \infty (a.s.) and so

\sum_k X_{n_{k+1}} - X_{n_k} is absolutely convergent (a.s.). Let A \subseteq \Omega be the set where this condition holds. Since this set is of measure 1 it is an event.

On A, define X = X_{n_1} + \sum_k \left( X_{n_{k+1}} - X_{n_k} \right) = X_{n_1} + \lim_{n \rightarrow \infty} X_{n+1} - X_{n_1} = \lim_{n \rightarrow \infty} X_n and on A^C define X = 0. Then X \in L_2(\Omega).

To establish convergence in norm,

|X_m - X|^2 = \lim_{k \rightarrow \infty} |X_m - X_{n_k}|^2 = \liminf_k  |X_m - X_{n_k}|^2.

Hence by Fatou’s lemma,

\lim_{m \rightarrow \infty} ||X_m - X||^2 = \lim_{m \rightarrow \infty} \mathbb{E} \liminf_k  |X_m - X_{n_k}|^2 \le \lim_{m \rightarrow \infty} \liminf_k ||X_m - X_{n_k}||^2 = 0

establishing the convergence of the sequence to an X \in L_2(\Omega).

Navigation

About

Raedwulf ….