Quadratic Variation of Brownian Motion

definition: A subdivision of [0,t] is a strictly increasing finite sequence t_0,\ldots,t_n \in [0,t] such that t_0 = 0, t_n = t.

definition: The quadratic variation of a real function x over a subdivision s_0,\ldots,s_n of [0,t] is v(x,s) = \sum_{i=1.n} |\Delta x(s_i)|^2 where \Delta r_i = r_i - r_{i-1}.

definition: The quadratic variation of a real function x over [0,t] is v(x) = \sup \{v(x,s) : s \text{ is a subdivision of } [0,t] \}

Let W be a Brownian motion, and let s = s_0,\ldots,s_n be a subdivision of [0,t]. The quadratic variation of W over the subdivision s is T_n(s) = \sum_{i=1..n} |\Delta W(s_i)|^2 where \Delta W(s_i) = W(s_i) - W(s_{i-1}). The expectation

\mathbb{E} T(s) = \sum_{i=1..n} \mathbb{E} (\Delta W(s_i))^2 =  \sum_{i=1..n} \Delta s_i = t

Since the increments are independent,

\text{var}(T(s)) = \sum_{i=1..n}  \text{var} ((\Delta W(s_i))^2) = \sum_{i=1..n} 2(\Delta s_i)^2 \le 2 t ||\Delta s||_{\infty}

Choosing a sequence of subdivisions \left< \pi_n \right> such that \sum_n ||\Delta \pi_n||_\infty < \infty,

\sum_n \text{var} (T(\pi_n)) = \sum_n \mathbb{E} (T(\pi_n) - \mathbb{E} T(\pi_n))^2 < \infty. Since \sum_{n \le m} (T(\pi_n) - \mathbb{E} T(\pi_n))^2 is a non-decreasing sequence of partial sums convergent to \sum_n  (T(\pi_n) - \mathbb{E} T(\pi_n))^2, the MCT states \sum_n \text{var} (T(\pi_n)) = \lim_m \mathbb{E} \sum_{n \le m} (T(\pi_n) - \mathbb{E} T(\pi_n))^2 = \mathbb{E} \sum_n  (T(\pi_n) - \mathbb{E} T(\pi_n))^2 < \infty and this implies that the terms of the sum converge to zero almost surely: \lim_n (T(\pi_n) - \mathbb{E} T(\pi_n))^2 = 0. Hence \lim_n T(\pi_n) = \mathbb{E} T(\pi_n) = t almost surely.

lemma: When Z is a normal(0,\sigma) random variable, \mathbb{E} Z^k = \sigma^2, 3 \sigma^4 for k = 2, 4 and \text{var} Z^2 = 2 \sigma^4.

The moment generating function of Z is \phi(t) = e^{\frac{1}{2} \sigma^2 t^2}. Let u = \frac{1}{2} \sigma^2 t^2. Then \phi(t) = e^u. Since u' = \sigma^2 t, u'' = \sigma^2,

\phi'(t) = e^u u'

\phi''(t) = e^u (u'^2 + u'')

\phi'''(t) = e^u(u'^3 + 3u' u'')

\phi''''(t) = e^u(u'^4 + 6u'^2 u'' + 3u''^2)

and so \mathbb{E} Z^2 = \sigma^2, \mathbb{E} Z^4 = 3 \sigma^4. \text{var}(Z^2) = \mathbb{E} Z^4 - (\mathbb{E} Z^2)^2 = 2 \sigma^4.

Navigation

About

Raedwulf ….