Some Properties of Sigma Algebra

lemma: Let X : \Omega \rightarrow \Omega'. Then (X^{-1} a)^C = X^{-1} a^C when a is a subset of \Omega' and X^{-1} \cup A = \cup X^{-1} A when A is a function into subsets of \Omega'.

q \in (X^{-1} a)^C iff q \not \in X^{-1} a iff X(q)\not \in a iff X(q) \in a^C iff q \in X^{-1} a^C.

q \in X^{-1} \cup A iff there is \lambda such that q \in X^{-1} A(\lambda) iff X(q) \in A(\lambda) iff q \in X^{-1} A(\lambda) iff q \in \cup X^{-1} A.

lemma: Let X : \Omega \rightarrow \Omega' and let A be a system of subsets of \Omega'. Then \sigma X^{-1} A = X^{-1} \sigma A

Let Q be a system of subsets of \Omega' such that q \in Q iff X^{-1} q \in \sigma X^{-1} A. Then A \subseteq Q. Furthermore, Q is a sigma algebra of \Omega':

  • X^{-1} \Omega' = \Omega \in \sigma X^{-1} A.
  • if q \in Q, then X^{-1} q \in \sigma X^{-1} A. But then X^{-1} q^C = (X^{-1} q)^C \in \sigma X^{-1} A and so q^C \in Q.
  • if \left< q_i \right> is a sequence of sets of Q then \left< X^{-1} q_i \right> is a sequence of sets of \sigma X^{-1} A and so X^{-1} (\cup_i q_i) = \cup_i X^{-1} q_i \in \sigma X^{-1} A and so \cup_i q_i \in Q.

Hence \sigma A \subseteq Q and so X^{-1} \sigma A \subseteq \sigma X^{-1} A. Since X^{-1} A \subseteq X^{-1} \sigma A and X^{-1} \sigma A is a sigma algebra, it follows that \sigma X^{-1} A \subseteq X^{-1} \sigma A. Hence \sigma X^{-1} A = X^{-1} \sigma A.

Navigation

About

Raedwulf ….