Normal Random Variable

Univariate

A normal(\mu,\sigma) random variable is a continuous random variable X with density f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2}. The moment generating funcion \phi_X(t) = e^{\mu t + \frac{1}{2} \sigma^2 t^2}. The mean \mathbb{E} X = \mu and the variance \mathbb{V} X = \sigma^2. The cumulative distribution of the normal(0,1) random variable X is denoted by N(x) =  P[X \le x]. Since f_X is even, \mathbb{E} f(X) = \mathbb{E} f(-X)

An affine function Y = aX + b of a normal random variable X is also a normal random variable with mean \mu_Y = a \mu_X + b and variance \sigma_Y^2 = a^2 \sigma_X^2. Hence Y = \frac{1}{\sigma} (X - \mu) is a normal(0,1) random variable.

An important result as it relates to option pricing is the Gaussian Shift Lemma (Büchen) which states

lemma: Let X be normal(0,1). Then \mathbb{E} e^{aX} f(X) = e^{\frac{1}{2} a^2} \mathbb{E} f(X + a).

this follows from the identity e^{ax} \phi(x) = e^{\frac{1}{2} a^2} \phi(x - a) and the invariance of the domain of integration to shifts.

example: If X(T) = X(t) e^{(r - \frac{1}{2} \sigma^2) \tau + \sigma \tau^{1/2} Z} where Z is normal(0,1), then \mathbb{E} X(T) = X(t)  e^{r \tau} using the GSL.

Multivariate

More generally, a normal(\mu,\Sigma) random vector is a continuous random vector X with density f_X(x) = (\det 2 \pi \Sigma)^{-1/2} e^{-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x - \mu)} where \mu = \mathbb{E} X and \Sigma = \mathbb{E} (X - \mu) (X - \mu)^T.

When the components are mutually independent, the covariance matrix is a diagonal matrix of marginal variances. In this case the random variable y = \sum_i c_i X_i is a normal with mean \mu_y = \sum_i c_i \mu_i and variance \sigma_y^2 = \sum_i c_i^2 \sigma_i^2.

The multivariate version of the GSL is

lemma: Let X be normal(0,1;R) where R is the correlation matrix. Then \mathbb{E} e^{c^T X} F(X) = e^{\frac{1}{2} c^T R c} \mathbb{E} F(x + Rc)

Since

\mathbb{E} e^{c^T X} F(X) = \prod \int dx e^{c^T x} \det (2\pi R)^{-1/2} e^{-\frac{1}{2} x^T R^{-1} x} F(x) \\ = \prod \int dx \det (2\pi R)^{-1/2} e^{-\frac{1}{2}(x - Rc)^T R^{-1} (x - Rc)} e^{\frac{1}{2} c^T R c} F(x) \\ = \prod \int dx \det (2\pi R)^{-1/2} e^{-\frac{1}{2}x^T R^{-1} x} e^{\frac{1}{2} c^T R c} F(x + Rc) = e^{\frac{1}{2} c^T R c} \mathbb{E} F(x + Rc)

Bivariate

When the vector has dimension 2, the distribution is called bivariate. Let \rho be the correlation between the components. When the components are normal(0,1) random variables, the bivariate density with correlation \rho is f(x_1,x_2) = \frac{1}{2\pi (1 - \rho^2)^{1/2}} e^{-\frac{1}{2} \left( \frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{1 - \rho^2} \right) } and the distribution function N(x_1,x_2,\rho) = P[X_1 \le x_1, X_2 \le x_2].

The conditional density P_{X_1 | X_2} of the bivariate has density f(x_1 | x_2) = \frac{ f(x_1,x_2) }{ f(x_2)} = \frac{1}{(2\pi(1 - \rho^2))^{1/2}} e^{-\frac{1}{2} \left( \frac{(x_1 - \rho x_2)^2}{1 - \rho^2} \right)}

The bivariate version of the Gaussian Shift Lemma is

lemma: Let X,Y be normal(0,1) with correlation \rho. Then \mathbb{E} e^{aX + bY} f(X,Y) = e^{\frac{1}{2} (a^2 + 2 \rho ab + b^2)} \mathbb{E} f(X + a + b\rho, Y + b + a\rho).

Since e^{ax+by} \phi(x,y;\rho) = e^{\frac{1}{2} (a^2 + 2 \rho ab + b^2)} \phi(x - a - \rho b, y - b - \rho a) the conclusion follows.

Solved Problems

This section comprised worked solutions for chapter 2, Büchen.

Navigation

About

Raedwulf ….